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CALCULATION OF MANIN'S INVARIANT 
FOR DEL PEZZO SURFACES 

TOHSUKE URABE 

ABSTRACT. For r = 7 and 8 we consider an action of the Weyl group of type 
Er on a unimodular lattice of rank r + 1. We give the tables of the first 
cohomology groups for all cyclic subgroups of the Weyl group with respect 
to this action. These are important in the arithmetic theory of Del Pezzo 
surfaces. 

0. INTRODUCTION 

In his book "Cubic Forms" [11] Manin proposed several ideas related to the 
Brauer group. (The Brauer equivalence, a method for giving counterexamples to 
the Hasse principle, etc.) Let Y be a surface defined over a perfect field k, and 
k be the algebraic closure of k. We assume that the pull-back X = Y 0 k is a 
projective irreducible smooth surface over k. Manin considered the Brauer group 
Br(Y) (Milne [13, Chapter IV]). This is very useful in the arithmetic of surfaces. 
(See also Swinnerton-Dyer [14].) 

In [11] Manin showed also several examples of cubic surfaces in three-dimensional 
projective space P3 among others, and suggested the extension of his theory to 
general Del Pezzo surfaces. Recall that X is called a Del Pezzo surface, if the anti- 
canonical line bundle - w of X is ample. It is known that for Del Pezzo surfaces 
the degree d = (w, w) satisfies 1 < d < 9. A Del Pezzo surface of degree 3 is 
nothing but a cubic surface in P3. In this article we give tables of some data for 
Del Pezzo surfaces of degrees 2 and 1. The Supplement section at the end of this 
issue contains our main tables. Our tables correspond to Manin's table of [11, pp. 
176-177] in the case of degree 3. 

In order to apply Manin's idea to concrete examples, we would like to de- 
termine Br(Y) H2 (Yet, Gm) explicitly. For this we can use the Hochschild- 
Serre spectral sequence E"' = HP (Gal, H9(Xet Gm)) = HP+9 (Yet, Gm), where 
Gal = Gal(k/k) is the Galois group of the extension k/k. Note here that E2'? - 

H2(Gal, k*) coincides with Br(k) by definition, and does not depend on the geom- 
etry of Y and X: it is not very interesting. Also, E' 1 = H'(Gal, Pic(X)) , where 
Pic(X) = H1 (Xet, Gm) denotes the Picard group of X. 

Any Del Pezzo surface is birationally equivalent to the two-dimensional pro- 
jective space p2 and has the following properties: first, since H2 (Xet, Gm) = 0 
(Milne [12]), we have E2"2 0, and thus Br(Y)/Br(k) Ker (H1(Gal, Pic(X)) 

H3 (Gal, k*)). Second, Pic(X) is a discrete group and coincides with the Neron- 
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Severi group NS(X) of X. Third, NS(X) is a free Z-module of rank 10- d. Fourth, 
the intersection form is a symmetric bilinear form (., ): NS(X) x NS(X) -* Z and 
it defines the structure of a lattice with discriminant 1 and signature (1, 9 - d) on 
NS (X). 

Following Manin, we assume moreover that the image G of the homomorphism 
Gal -* Aut (NS(X)) is a cyclic group. Under this assumption we have Br(Y)/Br(k) 
c H7(Gal, Pic(X)) H1(G, NS(X)). Therefore, the calculation of the group 
H1(G, NS(X)) has great importance. 

Now, by lattice theory, the structure of the lattice NS(X) is uniquely determined 
by the degree d, if d + 8. (When d = 8 there are two possibilities.) Therefore, we 
can denote it by Ur = NS(X) with r = 9 - d if 1 < d < 7 . The lattice Ur is the 
unimodular lattice with signature (1, r) and is defined for 2 < r < 8 . Let W(Rr) 
be the group of automorphisms of Ur preserving the intersection form and fixing the 
canonical class w E Ur. Note that the image G of the Galois group Gal is contained 
in W(Rr). It is known that for 3 < r < 8 the group W(Rr) is a finite group 
isomorphic to a Weyl group appearing in the theory of Lie groups (Bourbaki [1, 
Ch. VI]), and its action on the orthogonal complement of w E Ur can be identified 
with the action of the Weyl group on the Cartan subalgebra of a semisimple Lie 
algebra. The type of W(Rr) is A2 +A1 (when r = 3 ), A4 (r = 4 ), D5 (r = 5), E6 

(r = 6), E7 (r = 7) and E8 (r = 8) respectively. (The discovery of the connection 
between Weyl groups and Del Pezzo surfaces is very old. For example, see Cartan 
[3], Du Val [6]. For a modern treatment see Manin [11, p. 129, Theorem 25.4].) 

We find that our problem is the following: calculate the group H1 (G, Ur) for 
every conjugacy class of W(Rr), where G is the cyclic group generated by an element 
belonging to the conjugacy class. 

When r < 6, the results have been given in [11] subject to some necessary 
corrections that we shall discuss below. (See also Kunyavskii, Skorobogatov and 
Tsfasman [9].) In particular, we can find a table of H1(G, Ur) for r = 5, 6 in 
[11]. In this article we give tables of conjugacy classes and their associated groups 
H1 (G, Ur) for r = 7 and r = 8. For the classification of conjugacy classes in the 
Weyl group of type E7 or Eg we have the results of Carter [4]. We apply his results. 

Note that a Del Pezzo surface of degree 2 corresponding to r = 7 is a smooth 
surface in the weighted projective space P(2, 1, 1, 1) defined by a polynomial 
w2 +F4 (x, y, z), where F4 is a homogeneous polynomial of degree 4, and a Del Pezzo 
surface of degree 1 corresponding to r = 8 is a smooth surface in the weighted pro- 
jective space P(3, 2, 1, 1) defined by a polynomial w2 + Z3 + G4(x, y)z + G6(x, y), 
where G4, G6 are homogeneous polynomials of degree 4 and 6, respectively. The 
connection to the arithmetic of curves of genus 3 (the plane curve defined by 
F4(x, y, z) is the canonical model of a curve of genus 3) and to the arithmetic of el- 
liptic curves (for general constants a, b the polynomial w2+z3+G4(a, b)z+G6(a, b) 
defines an elliptic curve) may be very interesting. Moreover, since the group W(Rr) 
is isomorphic to the Weyl group of type Er for r = 6, 7, 8, the connection to Weyl 
groups may also be interesting. This article is the starting point of a study of the 
case of degree 2 and 1. (See [11, p. 115, Remark 23.8.1]. Besides, there may be 
a connection to Lie groups. It is quite natural to expect that behind Weyl groups 
there are hidden Lie groups. Of course, no reasonable connections between Lie 
groups and Del Pezzo surfaces are known at present. It would be interesting to 
discover this connection, if it exists.) 
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In ? 1 we try to give a clear theoretical description of the structure of the group 
H' (G, Ur) as a preparation. Among other things, we show that H' (G, Ur) carries 
a nondegenerate alternating bilinear form with values in Q/Z. Thus in particular, 
the order h' of H'(G, Ur) is always a square number. 

Therefore, it follows that the seventh column in Manin's table for the case d = 3, 
r = 6 on page 176 in [11] contains two mistakes. The seventh item Z2 corresponding 
to the conjugacy class C20, and the tenth item Z2 corresponding to C4, have to 
be replaced by 0, since the order of Z2 is not a square number. Also the table 
for the case d = 4, r = 5 on page 178 in [11] or on page 454 in [10] contains 
two mistakes at the items corresponding to C20 and C4 in the case d = 3, r = 6. 
Related to these mistakes of Manin, a result in Milne [12] can be improved: the 
Brauer group of a rational surface over a finite field always carries a canonical 
nondegenerate alternating form. Milne did not try to show that the bilinear form 
is alternating, because he had believed Manin's false data which contradicts the 
alternating property. 

Moreover, we give an equality h' = [M: Q ]2, where M and Q are certain 
submodules in Ur. Using this equality, we can determine h'. 

It turns out that the theory developed here gives an effective method for deter- 
mining the group H' (G, Ur). Except for a few E8 cases, the calculation is easy. 
However, the number of conjugacy classes is quite large. 

Section 2 is devoted to the explanation of our main tables. The tables are given 
in the Supplement section at the end of this issue. Now, for the application to 
concrete examples we need to determine to which conjugacy class of the Weyl group 
the given cyclic action on Ur of the Galois group corresponds. For this purpose we 
have added the value of the index and the information on the orbit decomposition 
of the exceptional set to each conjugacy class in our tables. The index and the 
orbit decomposition were calculated using the "Mathematica" software running on 
a Macintosh II cx personal computer (Wolfram [16]). To collect data, we used the 
software "Excel". 

I have put the Mathematica notebooks used in my calculation in the anonymous 
ftp server at my university (ftp.math.metro-u.ac.jp. IP address 133.86.76.25. Urabe 
[15]). The reader can check the data in this paper using these notebooks after 
getting them by anonymous ftp. 

A free Z-module of finite rank equipped with a symmetric bilinear form (.,) 
with values in Z is called a lattice. The discriminant det L of a lattice L is defined 
by det L = I det(ei, ej) 1, where e1, e2, .. ., er is a basis of L. (det L is independent 
of the choice of the basis el, e2, ... , er.) If det L = 1, then L is called unimodular. 
If det L + 0, then L is called nondegenerate. A cyclic group of order k is denoted by 
Zk- When a group G acts on a set S, by SG = { x E S I g(x) = x for every g E G} 
we denote the set of fixed elements. If G is a cyclic group of order m with a generator 
w G C and if S is a G-module, we consider two special elements T = 1 - w and 

rn-i 

N = Z Wk in particular. The homomorphisms T, N: S -X S induced by them 
k=O 

are denoted by the same symbols. By definition T(x) = (1 - w)x = x - w(x) and 

N(x) = E wk) x = E wk (x). In this case, SG = Ker (T: S -* S). 
k-=O k=O 

Remark. Related to the order h' of H' (G, Ur) there is a conjecture by Manin. 
Denote by (s) the set of characteristic roots different from 1 of a generator of the 
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cyclic group G acting on Ur, and by i\ the discriminant of the sublattice Ug of 
fixed elements. Then, Conjecture 31.7 on page 182 in [11] says, for any Del Pezzo 
surface X of degree d with 1 < d < 6, that the equality H1 (1-) = h1zA holds. 

This conjecture has already been confirmed by Milne [12] and Zarkhin [17], and 
this provides another method for calculating h1. (However, it does not follow from 
it that h1 is a square number.) 

1. ACTION OF A CYCLIC GROUP ON A LATTICE 

Let L be a nondegenerate lattice and G be a finite cyclic group of order m acting 
on L. By w we denote a generator of G. Assume that the action of G on L preserves 
the bilinear form. 

Let G' = { X x C -* C - {0} is a group homomorphism } denote the group 
of characters of G. Set (L 0 C)x = {x E L 0 C g(x) = x(g)x for every g E G} for 
X E Gv. 

Lemma 1.1. There holds L 0 C = E (L 0 C)x (a direct sum). 
x 

The natural C-bilinear extension of (,*) on Lo C is denoted by the same symbol 
(, *). A Hermitian bilinear form ((,.)) on L 0 C is defined by ((x, y)) = (x, y) for 
x, y E L 0 C where - denotes the complex conjugate of y. 

Lemma 1.2. The direct sum in Lemma 1.1 is an orthogonal direct sum with respect 
to the Hermitian form ((., .)). 

Lemma 1.3. If y E (L X C)G, then y (Lo C)G. 

By E E Gv we denote the identity character. By definition (L0C)e = (L0C)G - 

Ker(T : L X C -* L C). Set r = Ker(N : L0 C -* L C). Obviously 
r = E (L 0 C)x. Let M be the orthogonal complement of LG in L. 

Lemma 1.4. We have M = Ker(N: L -* L). 

Proof. By Lemma 1.2, r and (L X C)G are orthogonal with respect to the Hermitian 
form ((, *)). By Lemma 1.3 they are orthogonal also with respect to the C-bilinear 
form (, ). Since (., ) is nondegenerate by assumption, by Lemma 1.1, F is the 
orthogonal complement of (L 0 C)G = (L 0 C),. This implies the lemma. O 

Corollary 1.5. Sublattices LG and M are nondegenerate. 

Proof. By Lemmas 1.4 and l.l we have LG n M c (L 0 C)G nr=0. O 

Lemma 1.6. We have T(L) C M and H1(G, L) ' M/T(L). 

Proof. We consider H1(G, L) '-Extz[c](Z, L), where Z[G] is the group ring of C. 
We have the following Z[G]-free resolution of the Z[G]-module Z: 

0 <- Z <- Z [G] TZ [G] NZ [G] <TZ[G] <--- 

Since L - Homz[G] (Z[G], L), we have the induced sequence 

T N T 
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By Lemma 1.4 we have 

H'(G, L) c ExtZ[G(Z, L) = Ker(N: L -> L)/Im(T: L -* L) = M/T(L). El 

For a nondegenerate lattice K, K* { x E K 0 Q'I (x, y) C Z for every y E K } 
is called the dual module of K. The natural Q-valued extension on K 0 Q of the 
bilinear form on K is denoted by the same symbol (.,.) here. Obviously K* D K 
and their indexes satisfy [K*: K] = det K. If K has an action of a group G, then 
the action is extended to K*. 

Note here that T: L -* M is the composition of the canonical surjective homo- 
morphism L -* L/LG and an injective homomorphism T: L/LG -* M. Now, since 
(L/LG) 0 Q can be identified with M 0 Q, L/LG is identified with a submodule 
M' in M 0 Q. Moreover, if ( E L is a representative of an element x E M' - L/LG, 
then (x, y) = ((, y) C Z for every y c M. Thus, one has M C M' C M*. Under 
this identification, T above is identified with the restriction of T: M* - M* to 
M. 

Corollary 1.7. The order h1 of H'(G, L) is finite. 

Proof. Since T: M -+ M is injective and since M is a free Z-module of finite rank, 
the index [M T(M)] is finite. Thus h1 - [M: T(M')] < [M: T(M)] is also 
finite. ? 

Lemma 1.8. Assume that K and M are nondegenerate sublattices of a unimodular 
lattice U. Asssume moreover that they are the orthogonal complements of each other. 
Then the Zmage M' of the canonical homomorphism U/K -e M 0 Q coincides with 
M*. 

Proof. Above we have shown M' C M*. Conversely, pick x C M*. Since U is 
unimodular, we have an element ( E U with (x, y) = ((, y) for every y E M. Let 
x' C M' be the image of ( under U -+ U/K -* M'. Then we have (x-x', y) = 0 
for every y E M. We have x = x' E M', since M is nondegenerate. Ol 

Applying Lemma 1.8 to U = Ur and K - UG, we have the following proposition. 

Proposition 1.9. For any cyclic subgroup G of W(Rr) with a generator w one 
has H1(G, Ur) v M/T(M*) = M/(1 - w)M*, where M denotes the orthogonal 
complement of UG in Ur 

A bilinear form (., *): A x A -* B over a finite abelian group A with values in an 
abelian group B is called skew-symmetric if (x, y) - (y, x) for every x, y E A. 
A skew-symmetric bilinear form such that (x, x) 0 for every x E A is called 
alternating. If the condition (x, y) = 0 for every y C A implies x = 0, then the 
skew-symmetric bilinear form is called nondegenerate. 

Now, the product H1 (G, L) x H' (G, L) -* H2(G, L 0 L) is defined. The sym- 
metric bilinear form on L induces a homomorphism H2 (G, L 0 L) -* H2 (G, Z) ? 

Z/N(Z) = Zm (Here, m is the order of the cyclic group G.) Thus we get a bilinear 
form (., -): H1 (G, L) x H1 (G, L) -* H2(G, Z). By cohomology theory this form 
is skew-symmetric. 

If we fix an embedding of groups H2(G, Z) C Q/Z, we get a bilinear form 
H'(G, L) x H1(G, L) -* Q/Z, which we denote by the same symbol (., .). 

The following theorem is essentially due to Zarkhin ([17, 3.4.1, Lemma b]). 
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Theorem 1.10. Under the same assumption as in Proposition 1.9 the bilinear form 
(, ): H1(G, Ur) X H1(G, Ur) -* H2(G, Z) is alternating and nondegenerate. 

Proof. Since Ur is unimodular, the form is nondegenerate (Milne [12]). We show 
that it is alternating. Assume that cohomology classes x, - 

E H1 (C, Ur) 
M/T(M*) are represented by the elements x, y E M. Then, it is known that their 
product in H2(G, Ur 0 Ur) is represented by E wa(X) 0 w (y) (Cartan, and 

O<a<b<m 

Eilenberg [2, p. 251]). Thus, (x, y-) is equal to the class of E (Wa(X), wb(y)) 
O<a<b<m 

in ZM. 
Now, note that our Ur has geometric origin. In the Neron-Severi group of a 

surface with canonical class w, the sum (w, () + ((, () is always an even integer for 
any element (. This is because for any line bundle corresponding to the element 

, X() - X(Ox) = ((w, () - (& ~)) /2 is an integer by Riemann-Roch. In our 
case, Ur is a model of a Neron-Severi group of a surface. Moreover, w E UG and 
(w, x) = 0 for every x E M. Thus, (x, x)/2 is an integer for x E M. 

Since N(x) = 0 for x E M, we have 

Ea( (X), W b(X)) 

O<a<b<m 

=I ( S ((X): W b(X)) + 5 (Wb(X), Wa(X)) 
O<a<b<m O<a<b<m 

I m-1 m-1 m-1 

= 2, (W a(X) W b(X) ) (Wa(X), Wa(X)) 
a=O b=O a=O 

1 
- ((N(x), N(x)) - m(x, x)) 2 

= - m(x, x)/2. 

Thus one knows (x, x) = 0. O 

In the following, for a finite abelian group B, we denote by By the dual abelian 
group Hom(B, Q/Z). The groups B and By are isomorphic. 

A subgroup I of an abelian group A with a bilinear form (,) A x A -* Q/Z 
is called isotropic, if (x, y) = 0 for every x, y E I. 

Lemma 1.11. Let A be a finite abelian group carrying a nondegenerate alternating 
bilinear form (,*) A x A -* Q/Z. 

1. The homomorphism W : A -* Av defined by cp(x)(y) = Kx, y) induces an 
isomorphism of groups. 

2. Let I C A be a -maximal isotropic subgroup. The homomorphism , induces 
isomorphisms ac: I -* (A/I)V and 3: A/I -* IV. In particular the order of 
A is equal to the square of the order of I. 

3. There exists a maximal isotropic subgroup I c A with the following property: 
there is an isomorphism of groups O: I + Iv -* A such that the restriction 
of O to I is the identity mapping and (O (x), O (y)) = ((x, y)) for x E I and 
y E IV, where ((., ,)): I x Iv -* Q/Z denotes the canonical perfect pairing 
and I + Iv denotes the direct sum of the abelian groups I and IV. 
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Proof. Easy. O 

Remark. The above statement (3) implies that the exact sequence 

O -* I -* A -* A/I -* O 

splits. But all maximal isotropic subgroups do not have this property. Let p be a 
prime number and consider an abelian group A = Zp2 + Zp2 with a nondegenerate 
alternating bilinear form satisfying Kxo, yo) = l/p2 + z EZ Q/Z, where xo and yo 
are generators of respective components Zp2. Let 11 be the subgroup generated by 

xo, and 12 be the subgroup generated by pxo and pyo We can check easily that 
both I1 and 12 are maximal isotropic subgroups. One has I11 Zp2 and I1 has the 

property in (3). But, 12 - Zp + Zp and for 12 the above exact sequence does not 
split. 

Corollary 1.12. For some abelian group I there is an isomorphism 

H' (G, u,) - I + I. 

For 2 < r < 8 the model Ur of the Neron-Severi group of a Del Pezzo surface of 
degree 9 - r has a basis eo, ei,..., er with (eo, eo) = +1, (ei, ej) = -1 for 1 < 
i < r and (ei, ej) = 0 for i + j, where (.,.) denotes the intersection form. The 
canonical class corresponds to w = -3eo + e1 + . + er. The set of roots is defined 
by 

Rr ={EUr (a, c)=-2, (a, w)=O}. 

Each root a E Rr defines an automorphism SC, Ur , Ur called a reflection. It 
satisfies sa(x) = x + (x, a)a for x E Ur. It is easy to check that it preserves the 
intersection form, fixes w, and is of order 2, i.e., s 2 = the identity. The group 
W(Rr) generated by all sa's coincides with the group of automorphisms of the 
lattice Ur preserving w and the intersection form ([11, p. 115, Theorem 23.9]). 

Remark. For 3 < r < 8, Rr generates the orthogonal complement of w in Ur. 

In the case r = 2, R2 consists of only two elements R2 = { e - e2, -e I + e2 i 
and it never generates the orthogonal complement of w. However, even if r = 2, 
W(R2) - Z2 coincides with the group of automorphisms preserving w and the 
intersection form. 

Lemma 1.13 (Carter [4, Lemma 3, Lemma 2]). (1) For every w E W(Rr) there 
are linearly independent roots a,, a2. . ., ak CE Rr with w = SObl S12 *. *SCk. 

(2) If a1, Ca2,... C 1C E Rr are linearly independent, then the sublattice UrW of 
elements fixed by w = 811S12 ... Sk coincides with the orthogonal complement of 
the sublattice generated by a1, a2,. . v, ak E Rr. 

Let G C W(Rr) be a cyclic subgroup and w E G be a generator. Let ce1, Ca2, 

a ak E Rr be linearly independent roots with w = S .l S .2 .Slk By Q we 
denote the sublattice generated by ae1, a2, ..., c )a E Rr. 

Lemma 1.14. There holds Q = T(Q*). 

Proof. Set wj = SCl SC2 ... C'j. By induction on k we can show the equality 

k 

) w(x) =x + E (X, ej )wj -I (Cj). 

j=l 
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Note, moreover, that wj-i(aj) (1 < j <1 k) is a basis of Q since wj-i(aj) = aj+ 
(a linear combination of 1, ..., a Oi). Choose an arbitrary y E Q. We have 

k 
integers nl,..., nk with y = E njwj-i(aj). By definition of the dual module 

j=1 

we have an element x E Q* with (x, aj) = nj for 1 < j K1 k. By (1) we have 
y = -T(x), which implies Q C T(Q*). Moreover, for every x E Q* we have 
-T(x) = w(x) - x E Q by (1), since (x, ai) E Z for every i. Thus, Q D T(Q*). D 

Lemma 1.15. Let E E M 0 Q be the element with x = T() = (1 - w). We have 

E (w a(x), w (y)) = -m((, y). 
O<a<b<m 

m-1 m-1 

Proof. Set P= (m-a)wa. Since (1-w-1)P =-m + N withN= E wa, 
a=1 a=O 

and since N(y) = 0, we have (Wa(X), wb(y)) = (x, E w b-ay)) = 
O<a<b<m O<a<b<m 

(x: P (y)) = (I: (-w- )P(y)) = ( -m N) (y)) =-m(() y)O 

For a submodule K of a free Z-module L the set { x E L I nx E K for some 
nonzero integer n } is called the primitive hull of K in L, and is denoted by K. It 
is the minimum submodule containing K such that the quotient L/K is free. 

Proposition 1.16. We have M D Q D T(M*) and Q/T(M*) corresponds to a 
maximal isotropic subgroup of H'(G, Ur) M/T(M*). 

Proof. By Lemma 1.13 (2) we have M = Q. Thus, one has Q c M c M* C Q*. 
By Lemma 1.15 one knows T(M*) C T(Q*) = Q C M. Choose any elements 
xI y E Q/T(M*) and their representatives x, y E Q. By Lemma 1.14 we can 
choose an element ( E Q* with x = T(Q). Recall that (x, y) is equal to the class of 

E (Wa(X), wb(y)) = -m((, y) in Zm by Lemma 1.15. Since ((, y) E Z, one 
O<a<b<m 

has (x, y- = 0. Thus, Q/T(M*) defines an isotropic subgroup. Besides, since 

[M: T(M*)] = [M: Q][T(Q*): T(M*)] = [M: Q][Q* : M*] = [M: Q], 

it is maximal by Lemma 1.11. D 

Corollary 1.17. For any cyclic subgroup G of W(Rr) with a generator w, choose 
linearly independent roots a1, a2,. ., ak E Rr with w = sC,1 SC2 ...Sk Let Q be 
the sublattice generated by a1, a2 ..., ak E Rr and M be the primitive hull of Q 
in Ur. Then we have an exact sequence of abelian groups 

0 * M/Q H'(G, Ur) + M/Q * 0. 

In particular, h' = [M: Q]2, where h' denotes the order of the group H'(G, Ur). 

Remark. Now it is obvious that the Brauer group of a rational surface over a finite 
field always carries a canonical nondegenerate alternating form. Thus, we can 
improve a result in Milne [12]. Indeed, let Y be a surface defined over a finite field 
k, and k be the algebraic closure of k. We assume that the pull-back X = Y 0 k is 
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a projective irreducible smooth rational surface over k. Here X is not necessarily 
a Del Pezzo surface. The Galois group Gal = Gal(k/k) is isomorphic to the pro- 
finite completion Z of Z, and HP(Gal, k*) = 0 for p > 0. The lattice U = 
NS(X) = Pic(X) is a unimodular lattice, and the image G of the homomorphism 
Gal -* Aut(U) is a cyclic group. Since H2(Xet, Gm) = 0 (Milne [12]), we have 
Br(Y) _ H'(Gal, Pic(X)) _ H1(G, U). Since the action of G fixes the canonical 
class w E U and since (x, x) is an even integer for every x E U with (L, x) = 0, 
we can show that the canonical bilinear form on Br(Y) is alternating by the same 
reasoning as in Theorem 1.10. 

2. COMMENTS ON THE TABLES 

Table 1 and Table 2 in the Supplement section give some information of the 
conjugacy classes of the Weyl group W(E7) and W(E8) and their action on the 
lattice U7 and U8 respectively. The classification of conjugacy classes is due to 
Carter [4]. 

(1) The first column gives the number of the class of conjugate elements. 
(2) The second column gives the Carter symbol, a symbol to distinguish con- 

jugacy classes due to Carter. For every w E W(E,) with r = 6,7 or 8 we have 
linearly independent roots a1, a2, ..., ak E Rr with w= SalS1 2 ... S By Carter 
[4] we can assume, moreover, (ai, aj) - 0 if i j (mod 2) and i : j. With roots 
al, a2, ..., ak E Rr satisfying these conditions we can associate a graph F (i.e., a 
finite 1-dimensional complex) by the following rules: 

(i) The set of vertices of F has one-to-one correspondence with the set { a1, a2, 
*. I ,ak }- 

(ii) The vertex corresponding to ai and the vertex corresponding to a3. (i ? j) is 
connected in F by an edge if and only if (ai, aj) + 0. 

The graph F can contain cycles with an even number of vertices. If it contains 
no cycles, it coincides with the Dynkin graph of the root system generated by 
{ a1, a2, ..., ak } or with the Dynkin graph of the lattice generated by { aE1, a2, 
.a. I ak }. Each possible type of connected components of F has an associated 
symbol A by Carter. The Carter symbol of F is the formal sum m i Ai with the 

number m i of connected components in r corresponding to the symbol A i. We can 
use Carter symbols to denote the conjugacy class, since conjugate elements give the 
same graph. Note here that sometimes nonconjugate elements give the same graph. 
In this case symbols (.)' and (.)" are used to distinguish between them. (See last 
Remark in this section.) 

(3) The third column gives the value of the index of an element w E W(Er) 
in the conjugacy class. The index is defined in [11, p. 152, ?28.2] and plays an 
important role in Manin's theory. First we define the set of exceptional vectors by 

1r = {A E Ur I (A, A) =-1, (WI A) =-1} . 

We consider an element w E W(Rr). A set {A, A2,..., Ak } C Ir is called w- 
exceptional if: 

(i) the set { A1, A2,..., Ak } is w-invariant; 
(ii) (Ai, Aj) = 0 for i j. 

The index i(w) is defined to be the maximal number of elements of w-exceptional 
sets. 
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(4) The fourth column (Measure-1) gives the quotient of the order of the group 
and the number of elements in the conjugacy class. 

(5) Frame symbols in the fifth column describe the characteristic polynomial 
f/(t) of the homomorphism w: Ur Ur associated with an element w E W(Rr) 
in the class (Frame [81). If the Frame symbol is 7lmfm, then it implies that 

m 
4(t) = (tm - l)nm. In particular, n1 equals the trace of w on Ur, and the 

m 
order of w is equal to the least common multiple of integers { m i nm $& 0 }. If 
the base field k is a finite field with q elements, then the number N of k-points 
on the corresponding surface is given by N = q2 + qnr + 1 ([11, p. 143, Theorem 
27.1]). Note that 4(t) is different-from the characteristic polynomial 4o(t) of the 
homomorphism induced by w on the orthogonal complement of the canonical class 
W E Ur. Obviously, the two polynomials satisfy 4(t) - (t - 1)4o(t). Moreover, 
note that Frame symbols are different from symbols in the table on pp. 176-177 of 
Manin [11]. 

(6) Let a,, a2,..., ak E Rr be roots satisfying the conditions in (2) above. 
By Q we denote the sublattice generated by a,, a2,..., aLk E Rr. A lattice 
generated by a set of roots is classified by the associated Dynkin graph. The 
sixth column gives the associated Dynkin graph with Q. If the Dynkin graph is 
EakAk + EbetD+ E cmEm, then this implies that Q _ Q(Ak)ak + Q(De)be? 
EQ(Em)cm (orthogonal direct sum), where for a connected Dynkin graph Fo 
Ak, De, Em, Q(Fo) denotes the root lattice associated with Fo. By Carter's theory 
we can easily determine the Dynkin graph of Q. 

(7) Let M be the primitive hull of the above Q in Ur. It turns out that M is also 
generated by roots. The Dynkin graph associated with M is given in the seventh 
column. By the theory of Dynkin (Coxeter [5], Dynkin [7]) we can easily determine 
M and M/Q. 

(8) The eighth column contains the values of H1 (G, Ur), where G is the cyclic 
group in W(Rr) = W(Er) generated by an element in the conjugacy class. By the 
results in ?1 the order h1 is equal to [M : Q]2 = det Q/ det M, and it is easy to 
calculate it. On the other hand, by the property of the group cohomology, mx = 0 
for every x E H1(G, Ur), if m is the order of the group G. Therefore, we see that the 
group H1 (G, Ur) is uniquely determined by the order h1 if for every prime number 
p dividing h1, p2 does not divide m. Even if the last condition is not satisfied, 
except in a few cases we can determine the abelian group H1 (G, Ur) by Corollary 
1.12 and Corollary 1.17. The exceptions are the following three cases (all are in the 
case of W(R8) -W(E8)): No.1 A7+ Al, No.10 2A3+ 2A1, No.17 2D4(ai). For 
these three exceptions we apply Proposition 1.9, H1 (G, Ur) _ M/(1 - w)M*, and 
determine the group structure. 

(9) In the ninth column, the symbol arbs ... means that there are r orbits of 
order a, s orbits of order b, etc. A notation of the type 24 * 224 means that, of 28 
orbits of 2 exceptional vectors, four have one type of the characteristic sequence and 
twenty-four another. The characteristic sequence of an orbit A1, A2, .., Ak C Ir 
(Ai=w'-1(Al) for 2 <i < k, andAl =wn(Ai) #n_0 (rnod k)) of acyclic 
group G with a generator w is the sequence ((A1, A2), (A1, A3), ..., (Al, Ae)) 
where ? = [k/2] (the Gauss symbol) by definition. Note that the intersection 
matrix ((Ai, Aj)) is uniquely determined by the characteristic sequence. 

(10) The tenth column in the case W(R7) = W(E7) shows the conjugacy classes 
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which we cannot distinguish by the information in the ninth column. 

Remark. We can find some links among the table for E6 in Manin [11, pp. 176-177] 
and our tables below for E7 and E8, if we make the correction in Manin's table. 

First, there are natural mappings among tables induced by blowing-up of a point 
on the corresponding surface. Let f be the mapping from the set of rows of the 
table for E7 to the set of rows of the table for E8 satisfying f (1) = 98, f (i) = i + 36 
for 2 < i < 24, f(i) = i + 41 for 25 < i < 33, f(34) = 76, f(35) =79, f(36) = 80, 
f(37) = 109, f(38) = 87, f(39) = 88, f(40) = 95, f(41) = 101, f(42) = 103, 
f(43) = 104, f(44) = 107, f(45) = 110, f(i) = i + 45 for 46 < i < 52, f(i) = i + 46 
for 53 < i < 56, f(i) = i + 48 for 57 < i < 59 and f(60) = 111. This f has the 
following properties: 

1. It is almost injective. Indeed, if we exclude rows 40, 41, 44, 50, 55 and 59 
(for them the Carter symbol has (a)' or (a)") from the table for E7, then it 
becomes injective. Besides, f(40) = f(50) = 95, f(41) = f(55) = 101 and 
f(44) = f(59) = 107. 

2. It almost preserves Carter symbols. Indeed, if we ignore symbols (.)' and 
(a)", then the Carter symbol of the row i and that of f(i) are equal. 

3. The index of the row f(i) is greater than or equal to 1 plus the index of the 
row i. Moreover, except for rows 1 and 37 through 45, the equality always 
holds. 

4. If the Frame symbol of the row i is ]7 mfm, then the Frame symbol of the 
m 

row f(i) is equal to Inj+1 ]7 mn. 
m#l 

5. For items in the three columns Q, M and H1, tne item of the row i and the 
item of the row f(i) are equal ([11, p. 155, Theorem 29.1, Lemma 29.1.2]). 

6. For items in the remaining two columns Measure-" and "Number of orbits" 
we can find some relations between the corresponding rows. 

Also, there exists an injective mapping with similar properties from the set of 
rows of the corrected Manin's table for E6 to the set of rows of our table for E7. 

Second, for rows with positive index we can define the correspondence in the 
opposite direction, which is induced by blowing-down of exceptional curves on the 
surface. For rows with index 1 it gives the inverse mapping of the above f. It 
preserves the structure of H . However, it depends on the choice of the blowing- 
down. It is tiresome to give a clear description for this correspondence if the index 
is greater than 1, so we do not give it here ([11, p. 153, Theorem 28.3 and ?28.4]). 

Remark. We here give a remark on Carter symbols with (.)' or (a)" in the second 
column. 

Carter in [4] does not explain the distinction between (H)' and (-)". Since by data 
in the table in [4] we can distinguish between them, perhaps he thought that no 
explanation was necessary. We here would like to note that similar symbols were 
used in Dynkin [7]. By the nature of Carter's theory, after excluding items whose 
Carter's graph contains a cycle, Carter's list has to coincide with Dynkin's list in [7] 
of conjugacy classes of root subsystems in the root system E7 or E8. Thus perhaps 
Carter used these symbols following Dynkin. Since any items in the second column 
with (.)' or (a)" has Carter's graph without a cycle, items with these symbols are 
in a one-to-one correspondence with items in Dynkin's list with [.]' or [. 

Note that Dynkin gave an explanation on the distinction between [.]' and [.]" in 
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a footnote in [7]. According to him "The symbols [*]' and [*]" have the following 
meaning: In the case of the subalgebra E7, the subalgebras indicated with one 
accent are contained in the subalgebra A7, and those with two accents are not 
contained in A7; in the case of the algebra E8, the subalgebras with one accent are 
contained in A8, and those with two accents are not contained in A8." 

Here we notice that their usage of symbols is just opposite. Carter's item with 
(.)' corresponds to Dynkin's item with [.]", and Carter's with (.)" to Dynkin's with 
[.]' for both cases W(R7) = W(E7) and W(R8) = W(E8). 

ACKNOWLEDGMENTS 

I express thanks to Jun-ichi Matsuzawa for informing me of the classical result 
of E. Cartan [3], and to Alexander V. Sardo-Infirri for correcting my English in the 
manuscript. Also I am indebted to the inventors of the Macintosh computer and 
the developers of the excellent pieces of software "Mathematica" and "Excel". 

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, MINAMI-OHSAWA 1-1, 
HACHIOJI-SHI, TOKYO, 192-03 JAPAN 

E-mail address: urabeImath.metro-u. ac .jp 

REFERENCES 

1. N. Bourbaki, Groupes et algebre de Lie, Chaps. 4-6, Hermann, Paris, 1968. 
2. H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, NJ, 1956. 

MR 17:1040e 
3. E. Cartan, Sur la r6duction a sa forme canonique de la structure d'un groupe de transforma- 

tions fini et continu, Amer. J. Math. 18 (1896), 1-61. 
4. R. W. Carter, Conjugacy classes in the Weyl group, Compositio Math. 25 (1972), 1-59. MR 

47:6884 
5. H. S. M. Coxeter, Finite groups generated by reflections and their subgroups generated by 

reflections, Proc. Cambridge Philos. Soc. 30 (1934), 466-482. 
6. Patric Du Val, On isolated singularities of surfaces which do not affect the conditions of 

adjunction, (Part II), Proc. Cambridge Philos. Soc. 30 (1934), 460-465. 
7. E. B. Dynkin, Semisimple subalgebras of semisimple Lie groups, Amer. Math. Soc. Transl. 

(2) 6 (1957), 111-244. MR 13:904 
8. J. S. Frame, The classes and representations of the groups of 27 lines and 28 bitangents, Ann. 

Math. Pura Appl. (4) 32 (1951), 83-119. MR 13:817i 
9. B. E. Kunyavskii, A. N. Skorobogatov, and M. A. Tsfasman, Del Pezzo surfaces of degree 

four, M6m. Soc. Math. France (N. S.) 37, Supplement au Bulletin de la S. M. F., vol. 117, 
Fasc. 2, 1989, pp. 1-113. MR 90k:14035 

10. Yu. I. Manin, Rational surfaces over perfect fields I, Inst. Hautes Etudes Sci. Publ. Math. 30 
(1966), 55-113. MR 37:1373 

11. , Cubic forms, 2nd ed., North-Holland, Amsterdam, New York, Oxford, 1986. MR 
87d: 11037 

12. J. S. Milne, The Brauer group of a rational surface, Invent. Math. 11 (1970), 304-307. MR 
44:2756 

13. , Etale cohomology, Princeton Univ. Press, Princeton, NJ, 1980. MR 81j:14002 
14. P. Swinnerton-Dyer, The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc. 

113 (1993), 449-460. MR 94a:14038 
15. T. Urabe, maninhl, Mathematica notebooks for calculation of Del Pezzo surfaces of degree 2 

or 1, anonymous ftp-able, /tnt/maninhl-mac.tar.Z, ftp.math.metro-u.ac.jp (1994). 
16. S. Wolfram, Mathematica, A system for doing mathematics by computer, Addison-Wesley, 

Redwood City, 1988. 
17. Yu. G. Zarkhin, The Brauer group of an Abelian variety over a finite field, Math. USSR-Izv. 

20, No. 2 (1983), 203-234. MR 83h:14035 


	Cit r240_c243: 


